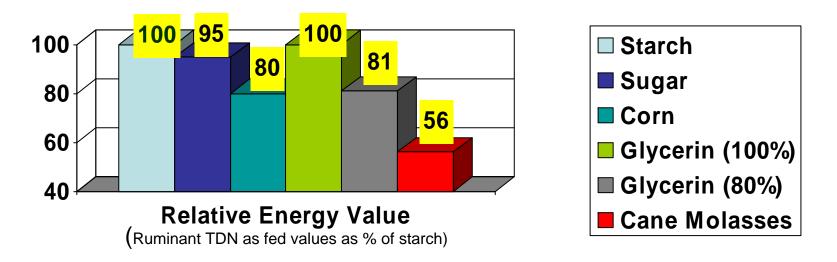
Handling and Use of Glycerin in Feed


Joe Harris, Ph.D. Westway Feed Products, Inc.

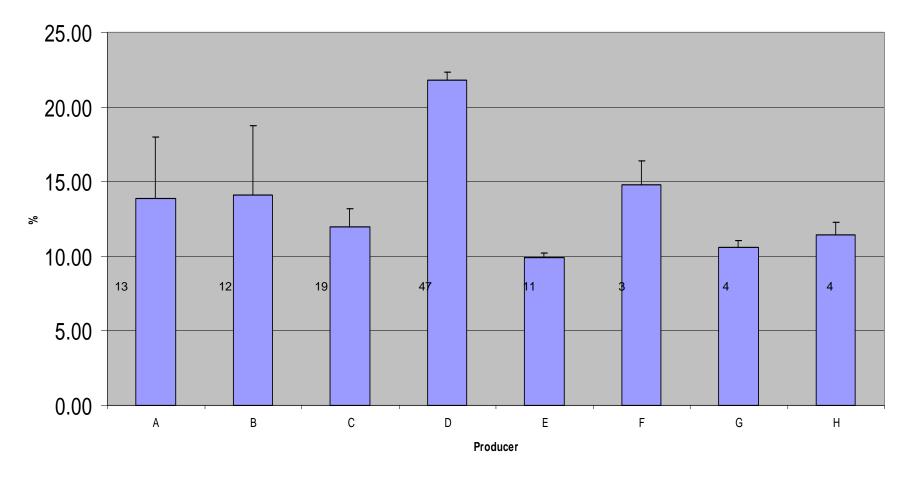
Jan. 9, 2007

Objectives of Discussion

- Explain why feed manufacturers have interest in biodiesel derived glycerin
- Describe how glycerin impacts the physical characteristics, nutritional properties and palatability of feeds
- Describe the developmental process we have used in evaluation of this material as a possible component of our products in terms of:
 - Approved supplier process/ Characterization of available products/ Evaluation of possible contaminants
 - Development of realistic specifications as an ingredient
 - Development of Standard operating procedures for this material
 - Internal evaluation of safety of various sources for use in feed

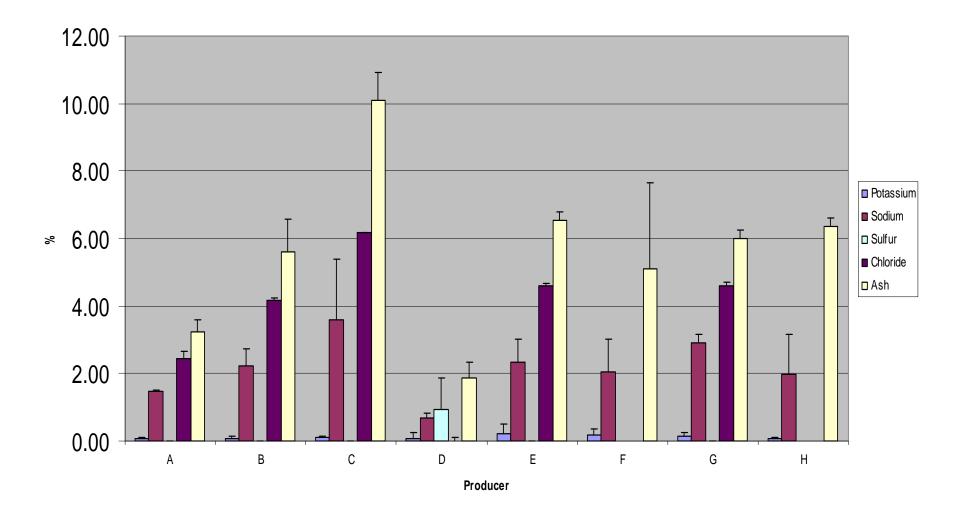
Why Glycerin?

Why Now?

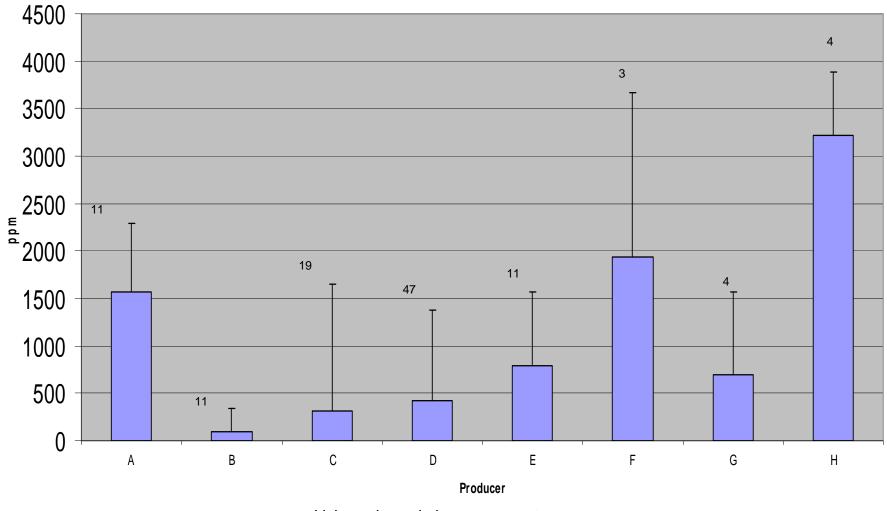

Supplies of glycerin have grown dramatically with increases in bio-diesel production. This has saturated saturating historic uses. Until such time as additional applications are developed-glycerin will compete with traditional energy feeds on a price basis.

Business synergies exists between feed industry and bio-diesel industries

Why Glycerin?

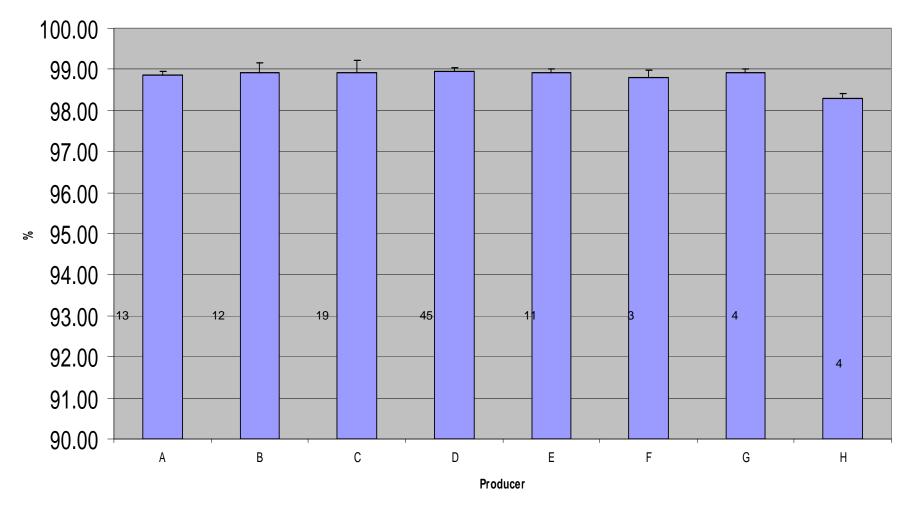

- Glycerin's unique physical properties that make it attractive as a component of liquid feed supplements:
 - Highly water soluble.
 - Melting point of 64 degrees F if absolutely pure but when small amounts of water are present it remains fluid at temperatures near zero.
 - Mild pleasant aroma
 - Sweet Taste
 - Near Neutral ph- typical 5 to 7
 - Highly palatable
 - Decreases the viscosity of molasses and other liquid by-products
 - Hydroscopic-attracts moisture-which can help prevent feeds from "drying out" at low humidity.

Moisture Content of Crude Glycerin By Producer

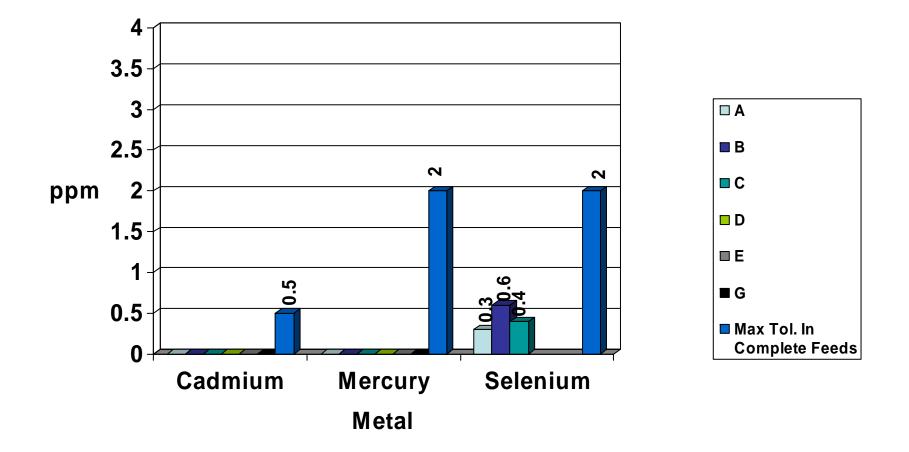


Values shown in bars represent number of samples analyzed

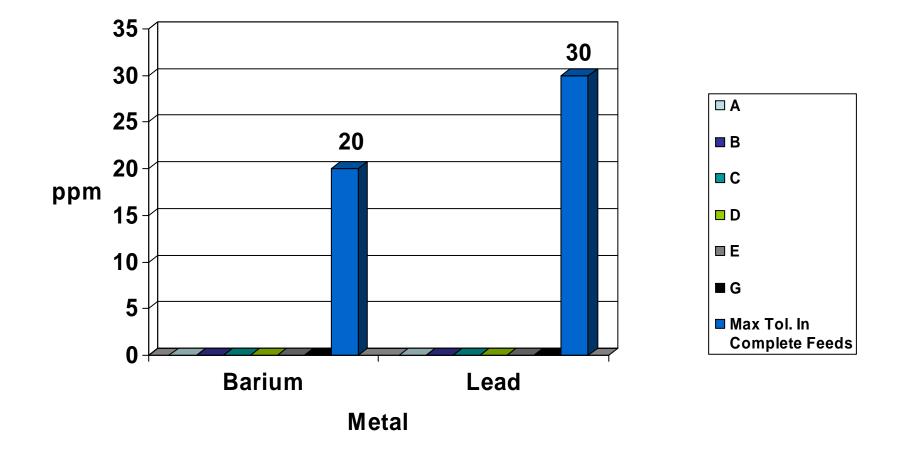
Primary Ash Constituents in Crude Glycerin from Different Producers



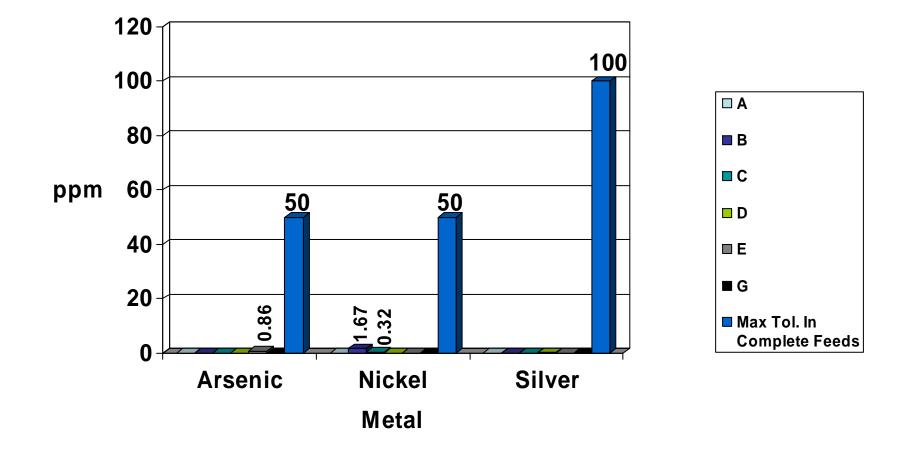
Methanol Content in Crude Glycerin by Producer

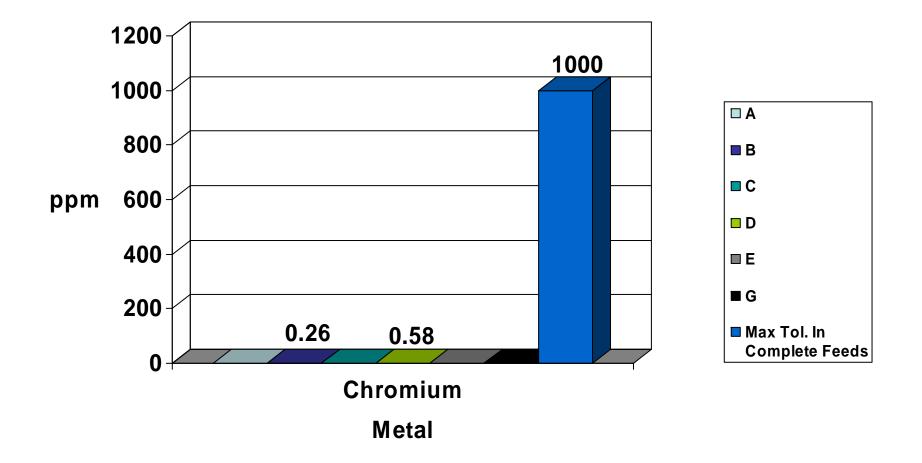

Values shown in bars represent number of samples analyzed

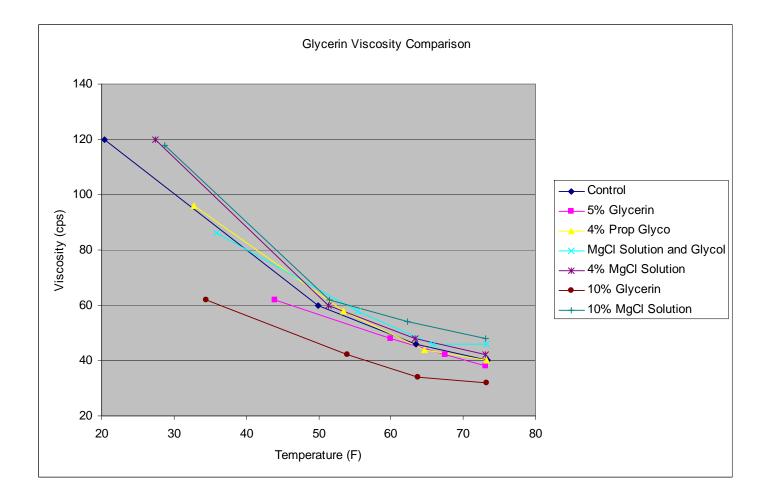
Glycerin Content in Crude Glycerin as a %of Organic Matter by Producer



Values shown in bars represent number of samples analyzed

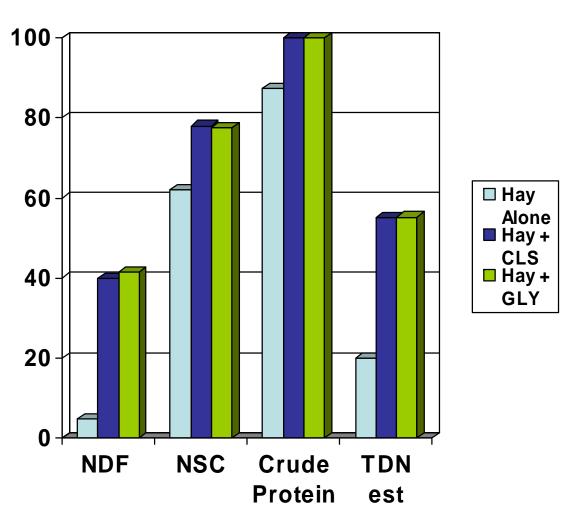

Highly Toxic Heavy Metals in Crude Glycerin


Toxic Heavy Metals in Crude Glycerin


Moderately Toxic Heavy Metals in Crude Glycerin

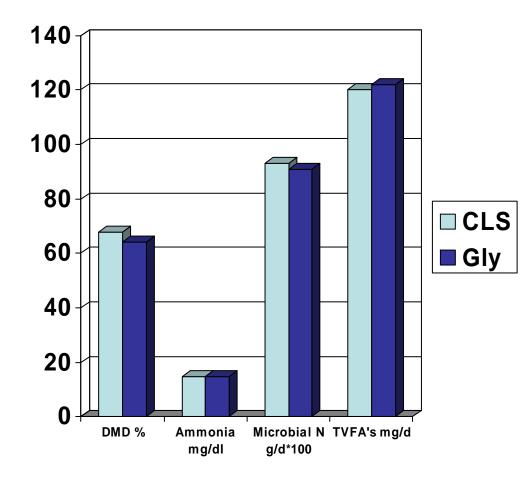
Slightly Toxic Heavy Metals in Crude Glycerin

Impact of Glycerin on Physical Properties of Textured Feed Conditioner

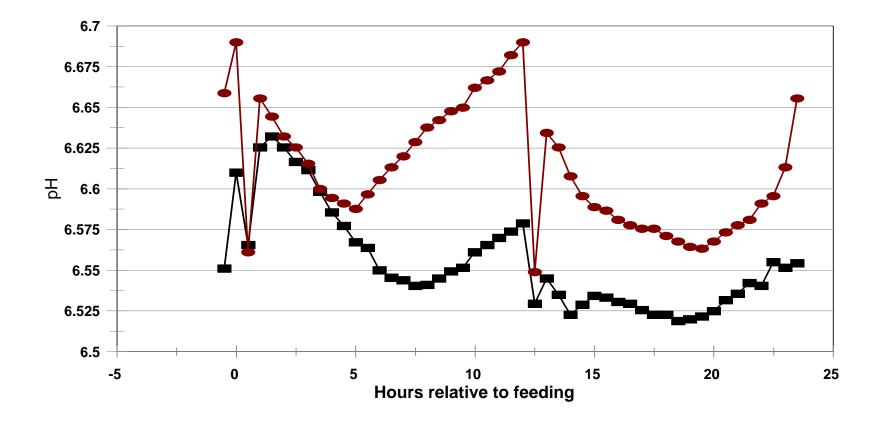

Evaluation of Liquid Supplements Added to Low Quality Forage in Continuous Culture of Rumen Microbes '06 West Virginia University

- Procedures
 - A poor quality hay was selected for the study so as to compare well to dormant season grazing pasture conditions. Hay contained 6.3% crude protein and 72.6% Neutral Detergent Fiber
 - Comparisons Included Hay alone vs. Conventional Liquid supplement –exclusively Molasses based (CLS), and Conventional Liquid Supplement containing Molasses + Glycerol (GLY)
 - Liquid supplements were added at 10 % Dry Basis to the Hay in treated cases in an in-vitro continuous culture system.

Evaluation of Liquid Supplements Added to Low Quality Forage in Continuous Culture of Rumen Microbes Digestibility of Dietary Nutrients %


Results

- Dramatic impact on digestibility of dietary fiber (Neutral Detergent Fiber) was observed –Increased by a factor of nearly 8 times
- Digestibility of Non-Structural Carbohydrates (NSC) was high in all cases as expected
- Note TDN est = sum of digestible NDF, NSC and CP


Impact on Measured Parameters Evaluation of Liquid Supplements (Conventional and 40% Glycerol) Added to Medium Quality Forage

TK Miller, RFPL- WVA10-06

- Study was designed to compare impact replacing molasses with glycerin on dry basis in a conventional liquid supplement. Approximately 40% glycerin was included in the LFS with 12.5% molasses vs typical all molasses based LFS.
- Results
 - Dry matter digestibility not different
 - Ammonia content and yield of microbial Nitrogen not different
 - Total production of Volatile Fatty acids tended to be higher in glycerin supplement with amount of acetic acid lower and butyric acid higher
 - Ph data implies drop post feeding was less with the glycerin based feed. (next slide)
- Conclusion- replacement of molasses with glycerin should not impact digestive performance of liquid supplements.

Impact of Glycerin (40%) on rumen culture ph

---- CLS ---- GLY

	Treatments			
Component	CLS	GLY	P =	
mM/day :				
Total VFA	181	178	0.73	
Acetic	121	107	0.06	
Propionic	41	42	0.22	
Iso-butyric	0.46	0.55	0.06	
Butyric	16	27	0.0008	
Isovaleric	0	0		
Valeric	2.4	2.4	0.93	
Molar %				
Acetic	67.1	59.9	0.0011	
Propionic	22.5	23.4	0.13	
Iso-butyric	0.26	0.31	0.02	
Butyric	8.8	15.0	0.0009	
Isovaleric	0.0	0.0	•	
Valeric	1.3	1.4	0.79	

TABLE 5. Effect of Liquid Supplement on Volatile Fatty Acid Production and pH

CONSUMPTION STUDIES

Effect of adding USP glycerin to equine feed to determine if feed refusal is an issue:

Added 1% glycerin to normal ration. Fed eight horses - 1 colt, 4 Thoroughbred mares, 1 Arab mare, 1 Arab gelding, 1 Thoroughbred gelding. Ages range from 6 months to 29 yrs.

Everything was cleaned up in normal time. Each horse took the first bite, chewed it up, and went back for the next with no hesitation. Bottom line is 1% glycerin caused no noticeable difference to the horses.

Consumption of high crude glycerin biodiesel origin content liquid supplement by pregnant beef cows confined in a dry lot: Two groups of beef cows were separated into pens in a dry lot. Both groups were offered a liquid supplement that contained 42.43% glycerin (formula shown below) and a diet consisting of cotton seed burrs and a 30% burr ration. One group was fed with a typical lick wheel feeder while the other group was fed using an open trough feeder. The trial period for the consumption study was 18 days. Diet and performance data are summarized below. As expected, the cattle consuming the liquid supplement from the open trough consumed more than the cattle exposed to the lick wheel feeder (10.6 vs. 7.0 lbs/hd/day). From this information it is ascertainable that feed refusal due to glycerin is not an issue. Further more the cows performed well on the product averaging 1.7 lbs/hd/day gain over the 18 day period.

Kenneth Eng, Jr. Ph. D. Consultant Eng Inc.

10/25/06

Observation on -C- Cattle at Nolan County Feeders

	Group 1	Group 2
	163 Cows	113 Cows
	18 days	18 days
Burrs	17.0#/ hd/dy	14.1#/hd/dy
30% Burrs Rations	4.2	3.5
Liquid (Liquid Wheel)*	7.0	-0-
Liquid (open)*	-0-	10.6
Total lbs/hd/day	28.2	28.2
Dry Matter/hd/day	24.3	23.2
# Gain/dy	1.7	1.7

Cows Description Medium frame size, solid mouth, Brangus type cows

Central Texas sale barn origin, Average wt. 1075lbs

Westway Experiment Blend

 WESTWAY PEED PRODUCTS Solution Report Final: 565 - Hereford

 Description
 Solution Report

 Assent Code
 Neurol
 Code Stared

 Assent Code
 Neurol
 Code Stared

 Assent Code
 Neurol
 Code Stared

 Assent Code
 Neurol
 Code
 Stared
 Code Stared

 Assent Code
 Neurol
 Code
 Neurol
 Code

 Assent Code
 Neurol
 Code
 Neurol

 Assent Code
 Neurol
 Code
 Neurol

 Assent Code
 Neurol
 Code

 Assent Code
 Neurol
 Code

Code	Name		Cost	Ma	x.	Low	
001-05	CANE MOLASSES-79.	5 *	7.2500			4.2656	
003-75	MILO DISTILLERS		0.9500			0.4040	
013-64	SYRUP/MCDS		5.4500			3.8035	
	Nutrient Name	Act	lual	Dry Matter	Units	Min.	Max
1	Weight	1.0	000	1,0000	Lbs	1,0000	1,000
2	Dry Matter %	73.0	000	100.0000	%	73.0000	
3	Crude Protein %	16.0	900	21,9178	%	16,0000	
4	NPN %	11.3	749	15.5821	16		
5	Crude Fat %	0.1	228	0.1683	×		
8	Total Sugar Invert	1.3	\$48	1,8696	*		
9	Moisture %	27.0	100	36,9863	*		
10	Calcium %	3.0	010	4,1110	•	3.0000	3.0010
11	Phosphorus %	0.5	000	0.6849	56	0.5000	0.0010
12	Salt %	3.0	10	4,1110	56	3.0000	3.0010
13	Sodium %	1.15	63	1.6387	56		0.0010
14	Chloride %	1.73	157	2.3777	1		
15	Magnesium %	0.15	33	0.2101			
16	Potassium %	1.50	03	2.1374			
17	Sulfur %	0.26	73	0.3662	*		
8	Cobalt ppm	1.01	52	1.3906	ppm		
9	Copper ppm	25.96		35,4930	ppm		
:0	Iron ppm	236.13	03	323,4661	ppm		
1	Iodine ppm	5.00	00	6.8493	ppm		
2	Manganese ppm	86.06	57	117.8982	ppea		
3	Selenium ppm	1.00		1.3699	ppm	1.0000	
4		118.19	71	161,9138	ppm	1.0000	
6	Vitamin A KIU/Ib	10.00			киле	10.0000	
7	Vitamin D KIU/Ib	1.00			KIUM	1,0000	
8	Vitamin E IU/Ib	10.00			ТИЛЬ	10.0000	
2	TDN %	52.70			%	20.0000	
5	NE (Lact) Meal/ewt	55.47			Mcal/cwt		
6	NE (Maint) Meal/c	59.64			Mcal/cwt		
	NE (Gain) Mcal/cwt	41.50			Mcal/cwt		

User : WALTD Set : ** Multiblend **

Tuesday, September 12, 2006 11:36:44 AM

Methanol Considerations

- Human metabolism includes conversion to formaldehyde and then formic acid-formic acid responsible for toxic effects- in some species excretion via respiration and urine is documented
- CFR 573.460 permits use of formaldehyde in feeds wherein approximately 25 % of animals diet is comprised of a protein meal treated with up to 1% formaldehyde. This would equate to approximately 0.25% dietary formaldehyde. Molecular weight of formaldehyde is 30.03 and molecular weight of methanol is 32. .25*(32.04/30.03) = .2667 % Substituting methanol for formaldehyde and assuming 20% glycerin in diet would equate to .2667/20 or 1.333 % methanol in glycerin source
- CFR 573.480 describes use of formic acid in hay crop silages as a preservative not to exceed 2.25% on dry weight basis- assuming 50% silage on a dry basis in diet would provide 1.125% formic acid. Formic acid m.wt. = 46.02. Methanol m.wt. = 32.04. Adjusting for molecular wt. 1.125 *(32/46) = .783% . .783/20 = would equate to 3.915% methanol in a glycerin source fed at 20% of diet to ruminant animals.
- CFR 573.640 describes the use of "methyl-esters" of higher fatty acids for use in animal feeds. Methyl-esters are considered non-toxic with LD 50 > 17.4 g/kg in rats. Digestion includes the release of methanol from the fatty acid. As a portion of molecular weight assuming C-16/0 as an average- methanol yield equals approximately 11.83% of inclusion of the methyl-esters. If diets contained 5 % methyl esters 5 X 0.1183= methanol contribution (.5915%). Again using a 20% inclusion of glycerin source .5915/20 = 2.957% methanol concentration in glycerin would be equivalent.
- Numerous literature references are available relative to feeding formic acid or its' calcium/potassium salts at levels near 1% on a formic acid basis. Methanol concentrations in order to reach this level and again adjusted for relative molecular weights would equal 1*(32/46) = 0.695 %. With glycerin content of 20% in diets .695/20 = 3.478% methanol would need to be present to provide these levels.

Methanol Considerations cont.

- EPA, 1994 cites a no observed adverse effect level (NOAEL) of 500mg/kg/day for rats fed 90 days.
 - Assuming a dietary dry matter intake of 2.3 % of body weight (23 grams/kg) a value of 0.5g/23g= 2.17 % of total diet. If glycerin was source at 20% of diet 2.17/20 = 10.85% methanol concentration tolerable in glycerin.
 - NOAEL level can be extrapolated in number of ways. A factor for interspecies differences could be applied and a factor for sensitive sub-populations could be applied. Assuming a safety factor of 3 for possible species differences and a factor of 10 for possible sensitive sub-populations an acceptable daily intake (ADI) would be calculated as 500/(3x10) = 17 mg/kg/d

ADI(mg/kg/d) =		17		%Glycerin in Diet =	10
Species	Age (wks)	bwt (kg)	FI (g/kg bwt)	ppm MtOH (max)	
Chickens, broilers	2	0.3	160	1063	
Chickens, broilers	7	2.1	62	2742	
Chickens layers	20	1.3	46	3696	
Chickens layers	40	1.9	47	3617	
Swine young		4	62	2742	
Swine mature		100	31	5484	
Cattle growing		135	27	6296	
Cattle beef mature		500	20	8500	
Cattle, dairy lactating		600	32	5313	
Horses (concentrate)		500	12	14167	

S.O.P. Development Documentation

	TABLE OF CONTENTS		
WESTWAY FEED PRODUCTS, INC.	I. BACKGROUND AND RATIONALE		
	II. SUMMARY OF PHYSICAL PROPERTIES AND IMPACT OF INCLUSION ON PHYSICAL PROPERTIES OF PRODUCTS		
	III. SUMMARY OF IMPACT ON LIQUID SUPPLEMENT PERFORMANCE		
	IV. INGREDIENT/PURCHASING SPECIFICATIONS		
	V. APPROVED SUPPLIERS		
	VI. TECHNICAL DATA		
i i i	a. Product Specifications		
Glycerin Resulting From Bio diesel Production	b. Physical Properties		
	c. Analytical Data		
In Liquid Feed Products	d. Methanol Content Evaluation		
Summary of Evaluation and Use	e. Nutrient Analysis		
	f Heavy Metals Analysis		
	g. Formulation Guidelines		
	h Application Rate26		
	i. Ingredient Listing		
	j. Labeling26		
Prepared By: Paul Mostyn, Joe Harris, Dave Caldwell, and Tom Geary	k. Subility Data		
	1. Summer and Winter Handling Characteristics		
	m. Storage and Handling Instructions		
	VII. REGULATORY PERSPECTIVE 27		
	VIII. QC PROGRAM BV STTE		
	IX. MSDS - VARIOUS SUPPLIERS		
Date: October 30, 2006	X. TROUBLESHOOTING		

Revision Date: 11/1/06

Page 2 of 34

Proposed Quality / Usage Parameters (Glycerin-Feed Grade) Chemical Properties:

Moisture	5-25%
Glycerol	> = 95% of the organic matter
Phosphorus	0.3% max in dry matter
Potassium	3% max in dry matter
Sodium	3.9% max in dry matter
Chloride	Guaranteed by supplier
Sulfur	Guaranteed by supplier
Methyl Esters	1% max in dry matter
Fat	1% max in dry matter
Methanol (Method AOAC 973.23 GCFID 16 th ed. 1995)	0.75% max in dry matter
Total Ash	12% max in dry matter
Lead	30 ppm max in dry matter
Cadmium	0.5 ppm max in dry matter
Nickel	50 ppm max in dry matter
Mercury	2.0 ppm max in dry matter
Selenium	2.0 ppm in the dry matter
Arsenic	50 ppm max in dry matter

Proposed Quality/Usage Parameters (cont.) Glycerin-Feed Grade

Physical Properties:

- Mild pleasant aroma
- Near neutral ph- 5 to 7.0

Usage Guidelines: via Labeling

•Not to be used in combination in diets containing formic acid, formaldehyde and methyl-esters.

•Guarantees for moisture, ash, sodium, potassium, sulfur and chloride maximums

•Limited inclusion rate in feeds i.e. poultry diets (5-10%), equines and swine (10%) and ruminants (20%)

Summary

- Glycerin from bio-diesel production is:
- An energy dense, palatable material for use in feed
- Of high purity-particularly when evaluated on an organic matter basis
- Low in concentrations of heavy metals
- Low in methanol concentration compared when compared levels of either metabolites approved for feed use or published toxicity values
- Can represent a value to animal feeding programs